If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-16t-6=0
a = 1; b = -16; c = -6;
Δ = b2-4ac
Δ = -162-4·1·(-6)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{70}}{2*1}=\frac{16-2\sqrt{70}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{70}}{2*1}=\frac{16+2\sqrt{70}}{2} $
| x+4/x-3=3x+10/2x | | 4(3t+5)=4(4t-3) | | 120+40x(x-12)=30x | | 120+40x=30x | | g/5-3=7 | | 15+6(x+1)=12 | | 3+x=88 | | 4x+5=-61-7 | | -5(2-x)=-2(2x-1)-1 | | 1/x^2=2.5-2x | | 2x(2x)-10x+11=0 | | x+10+x+10+3x-5=180 | | 3n+10=6n-25 | | 3x-9=-28 | | (x)/(5)=(x)/(6)+1 | | 4/5d+1=9 | | x.5+20=80 | | X+372=853,x | | (7x)+(13x)+(20x)=180 | | 8x+16(64-4x•8)=128 | | 0=4r-4r | | y+2=-3y-4 | | -5f=1254 | | y+2=-43y | | y/2.3+5.69=7.58 | | x/2+14=80 | | 5^2-3^2=x^2 | | 3(8-6a)=42 | | x+4+7+x-2+x+8+5=40 | | 5^2-3^2=x | | -3m+5+3m=5 | | x+4+7+x-2x+8+5=40 |